Hotspot Analysis of Spatial Environmental Pollutants Using Kernel Density Estimation and Geostatistical Techniques
نویسندگان
چکیده
Concentrations of four heavy metals (Cr, Cu, Ni, and Zn) were measured at 1,082 sampling sites in Changhua county of central Taiwan. A hazard zone is defined in the study as a place where the content of each heavy metal exceeds the corresponding control standard. This study examines the use of spatial analysis for identifying multiple soil pollution hotspots in the study area. In a preliminary investigation, kernel density estimation (KDE) was a technique used for hotspot analysis of soil pollution from a set of observed occurrences of hazards. In addition, the study estimates the hazardous probability of each heavy metal using geostatistical techniques such as the sequential indicator simulation (SIS) and indicator kriging (IK). Results show that there are multiple hotspots for these four heavy metals and they are strongly correlated to the locations of industrial plants and irrigation systems in the study area. Moreover, the pollution hotspots detected using the KDE are the almost same to those estimated using IK or SIS. Soil pollution hotspots and polluted sampling densities are clearly defined using the KDE approach based on contaminated point data. Furthermore, the risk of hazards is explored by these techniques such as KDE and geostatistical approaches and the hotspot areas are captured without requiring exhaustive sampling anywhere.
منابع مشابه
Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...
متن کاملModeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...
متن کاملSpatial variability and estimation of tree attributes in a plantation forest in the Caspian region of Iran using geostatistical analysis
This research was conducted to investigate spatial variability and estimate tree attributes in a plantation forest in the Caspian region of Iran using geostatistical analysis. Sampling was performed based on a 50m?125m systematic grid in a maple stand (Acer velutinum Boiss) 18 years of age using circular samples of 200m2 area. Totally, 96 sample plots were measured in 63 hectares and 14.25 he...
متن کاملJournal of Maps
Abstract: There is a continuing determination by academics and road professionals alike to investigate the most appropriate methods for identifying road accident hotspots particularly in urban areas. Increasingly this research has involved the use of GIS and spatial analysis in order to define both visually and statistically what can be defined as a road accident hotspot. Traditional methods of...
متن کاملApplication of multivariate statistics and geostatistical techniques to identify the spatial variability of heavy metals in groundwater resources
The performance of geostatistical and spatial interpolation techniques for estimation of spatial variability of heavy metals and water quality mapping of groundwater resources in Ramiyan district (Golestan province- Iran) were investigated. 24 spring/well water samples were collected and the concentration of heavy metals (Ni, Co, Pb, Cd and Cu) was determined using Differential Pulse Polarograp...
متن کامل